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ABSTRACT 

 

In this study, a Taguchi-based RSM in conjunction with an ANN model was 

utilized to ascertain optimal geometric parameters for the shredding blade 

employed in a plastic bottle shredder. The shredding process is pivotal in 

plastic recycling, involving the reduction of waste plastic into smaller 

fragments to facilitate subsequent transportation and processing. Despite 

existing research on plastic shredders, further investigations are warranted to 

optimize shredding blade design. Consequently, a numerical analysis, 

providing an in-depth insight into understanding the shredder parameters to 

elucidate the influence of geometric factors was conducted. Subsequent 

validation was carried out using experimental designs prescribed by the 

Taguchi-based RSM and ANN models. Both models were then evaluated based 

on predictive effectiveness and error against simulation data. The predictive 

outcomes presented that the ANN model resulted in better prediction capacity 

and lower prediction error than the RSM model, 0.16197 µm and 0.15567 µm, 

while the numerical validation value was 0.162 µm. Both the original and 

optimal blades were fabricated and utilized for experiments, illustrating lower 

wear after measurement using a microscope from ICamScope®. As a result, it 

is evident from this inquiry that this methodology presents a viable avenue for 

enhancing the efficiency of plastic recycling machinery and broader industrial 

applications. 

 

Keywords: Response Surface Method (RSM); Artificial Neural Network 

(ANN); Plastic Waste; Shredder Blade; Taguchi Method 
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Introduction 
 

Along with plastic materials becoming one of the most common materials in 

the world, the problem of plastic waste is also becoming more and more 

serious. Due to the huge amount of waste generated, the long decomposition 

time, and the depletion of natural resources, plastic waste has now become one 

of the major threats to the natural environment. As a result, the demand for 

plastic recycling, whereby certain recyclable plastics are treated for reuse, is 

growing day by day. In recycling plastic waste, to improve its mobility, ease, 

and availability for other new plastic products, it must be separated into smaller 

sizes utilizing shredders. Due to the crucial of this shredding stage, there have 

been many studies about the design as well as fabrication of waste plastic 

shredders. Reddy and Raju [1] developed a shredder model that was claimed 

as simple, efficient, required less time, and was cost-effective when compared 

to the existing available model. However, the geometry of the shredding blade 

as well as the operating conditions of the machine have not been analysed. Ayo 

et al. [2] built a low-cost waste plastic shredder for small as well as medium-

scale recycling plants. The shredder was assessed at 3 shredding speeds for 

some particle sizes. As for the works in [3]-[9], the machine has not been 

evaluated in terms of performance as well as the operating status of the 

shredding blades. Farayibi [10] also published a design for a waste plastic 

recycling device. In which, the chassis was simulated and analyzed utilizing 

SolidWorks software, while the machine's operational features have not been 

mentioned. Meanwhile, Jaff et al. [11] plotted and built both a shredder and an 

extruder for their waste plastic recycling system. However, due to limited 

experimental conditions, they did not have many conclusions about the 

operation of this system. 

In plastic shredders, the shredding blade plays an important role in the 

shredding stage as it determines the size of the shreds as well as the life and 

productivity of the equipment [12]. In addition, shredding blade damage or 

jams are the most common errors that lead to production stoppage [13]. 

However, the geometrical characteristics of the shredding blade and their 

influence on wear and/or deformation have not been fully studied. Though in 

the work of Yadav et al. [13], displacement and equivalent stress investigation 

were performed, these outcomes were not utilized for subsequent optimization 

or other improvements. Similarly, using the static structural method, Sekar 

Ravi [14] accomplished total displacement, stress, and strain analysis. Later, 

the shredding blade was advanced by hardening or chromium plating to 

increase the mechanical characteristics while the geometry was not considered. 

In the same manner, Yepes et al. [15] as well as Nasr et al. [16] investigated 

static stress within given shredding blades with two and three cutting edges, 

respectively, for chopping polyethylene terephthalate (PET) waste plastic. But 

like other authors, they did not perform tool profile optimization. In [17], Ikpe 

et al. checked for the alterations of the stress allocation at some force values 
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via SolidWorks but did not further use this result. In [12], the authors have 

further studied the profile of the shredding using both simulation and 

experiment. They used both the Taguchi method and RSM in a combination 

manner. The Taguchi method and RSM are both commonly utilized to achieve 

optimal values of relation research factors [18]. RSM was used to prevail over 

the discreteness [19] of the Taguchi method as well as because of the 

complexity of the blade design parameters. Currently, optimization methods 

have been used a lot such as RSM [20]-[21], artificial neural network (ANN) 

[22], particle swarm optimization (PSO), genetic algorithm (GA), glowworm 

swarm optimization (GSO) [23] and so on. However as stated, the application 

of these algorithms in blade profile optimization is still lacking. 

Due to this deficiency, an optimization technique utilizing Taguchi-

based RSM and ANN was employed in this study. Firstly, an orthogonal array 

was employed to conduct the experimental design. RSM was then used to 

determine the optimal parameters through a self-developed Matlab script. 

Subsequently, the accuracy of the optimal output data was validated using the 

ANN-predicted model and experimental measurements. Remarkably close 

agreement was observed among the actual experimental results, RSM 

predictions, and ANN forecasts. 

 

 

Description of the Shredder and its Shredding Blades 
 

From Figure 1, it is evident that the shredder operates using a 3-phase power 

supply. Categorized as a single shaft type, the shredder features a shaft adorned 

with 14 adjustable shredding blades, as depicted in Figure 2. Furthermore, the 

equipment incorporates dual rows of fixed blades, comprising a combined total 

of 30 blades on each side. In this investigation, preliminary experiments 

highlighted significant deformation solely in the movable blades. 

Consequently, the focus of the study centered on enhancing the geometry of 

these movable blades. The configuration of the movable shredding blade is 

illustrated in Figure 2a. It was intricately fashioned in an S-shaped contour, 

featuring two corresponding shredding ends. Additionally, a hexagonal 

aperture was incorporated at the blade's center, designed for effortless 

attachment onto the driven shaft, obviating the necessity for a keyway. The 

annotations within Figure 2a depict the symbols denoting the geometric 

parameters harnessed for the experimental design within this study. 

Subsequently, the shredding blades were fabricated using laser cutting and 

grinding techniques, as depicted in Figure 2b. 

The shredding blades were crafted from 5 mm-thick S45C steel plates, 

a widely adopted material selected for its cost-effectiveness, particularly well-

suited for small and medium-scale production establishments. To enhance 

hardness, a heat treatment was administered before the final grinding process, 
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from 205 GPa to 460 GPa. Table 1 outlines the key attributes of this material, 

which are utilized for the simulations. 

A 2D model of the entire blade was built to perform the simulation. The 

simulation analysis was performed using Comsol Multiphysics software. In 

this study, to discretize the simulation and computational domain, triangular 

elements were utilized. After being meshed, the blade model has 9892 

triangular-type, 376 edge-type, and 20 vertex-type elements. 

 

 
 

Figure 1: Details of the developed shredder in the present study 

 

      
                                      (a)                                          (b) 

 

Figure 2: The shredding blade; (a) CAD design, and (b) picture of a 

fabricated one 
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Table 1: Important properties of S45C steel used for numerical analysis 

 
Properties Before heat treatment After heat treatment Unit 

The density 7.78103 7.78103 kg/m3 

The Poisson’s ratio 0.3 0.3 - 

Young’s modulus 205 460 GPa 

The Coefficient of 

thermal expansion 
12.5 12.5 1/K 

 

 

Modelling of the Effect of the Geometrical Factor using RSM 
 

Experimental design using Taguchi-based RSM 
In the present simulation study, the response surface modelling was performed 

to demonstrate the mathematical relationship between the response, 

deformation D, and various geometrical factors. The mathematical model has 

been built based on a second-order polynomial as the following [24]-[25]: 

 

𝐷 = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑛

𝑖=1

+∑𝛽𝑖𝑖𝑋𝑖
2

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑛

𝑖=1

𝑛

𝑗=1

 (1) 

 

where D is the corresponding response, βi, βj, βij are the regression variables 

[26], n is the total number of input variables [27], and Xi, Xj are the values of 

the ith and jth geometrical parameters, correspondingly [28]. 

Numerous aspects could be considered in the design of the shredding 

blade. However, the pre-feasibility experiments highlighted that the sections 

most significantly affected by the shredding force and deformation were the 

blade's two ends. As a result, the initial optimization focus was solely on the 

dimensions that contribute to the shredding end. It's noteworthy that the outer 

diameter of the shredding blade, measuring 120 mm, remained unchanged 

throughout the optimization process. This decision was influenced by the 

continuation of prior research; the current study employed the same shredder 

as the preliminary experiments, except for the shredding blades.  

Furthermore, three distinct levels were established for each geometric 

parameter based on previous preliminary tests. The specific values for each 

factor and the corresponding three levels utilized in this study are presented in 

Table 2. 

 

 

 

 

 



Trieu Khoa Nguyen and Bach Phuong Ho Thi 

6 

Table 2: Geometrical factors and their detailed levels considered in the 

current investigation 

 

 

To optimize the geometry of the shredding blade, modeling the 

influence of its dimensions is essential to predict the response results for any 

arbitrary input factors. From the quantity of chosen dimensions of the 

shredding blade and their respective levels, a subset of the L18(36) orthogonal 

array (OA) was chosen as presented in Table 3. In total, 18 numerical 

simulations via Comsol for the shredding blades under the calculated 

shredding force were conducted using the dimension combinations of the OA. 

In this stage, 18 blade designs according to these dimension combinations were 

also built for simulations. The largest deformations of the blades, calculated 

by the numerical simulations, the mean standard deviation (MSD), and the 

corresponding S/N ratios were also presented in Table 3. To attain an effective 

shredding process, the deformation, the objective character of the 

investigation, should be minimized, hence the “smaller-the-better” option of 

the S/N ratio was used [29].  

 

Signal-to-noise (S/N) ratio analysis 
All the results of the S/N ratio analysis are presented in Table 4 and illustrated 

in Figure 3. As can be observed in Figure 3, as factors A, C, and E increased, 

the S/N ratio decreased. In other words, the deformation of the shredding ends 

increased. In contrast, within the study range, when factors B, D, and F 

increased, the deformation was predicted to decrease. By calculating the 

disparity between the maximum and minimum S/N ratio results of each factor, 

its respective contribution to the variability of the deformation result was 

obtained. This contribution of all factors is shown in Figure 4. Figure 4 shows 

that the F factor and B factor are the two factors that have the most influence 

on the deformation results, 28.09% and 26.54%, respectively. As shown in 

Figure 2a, as F (the value of coordinate y of Ø100) increased, the shredding 

end became thicker, resulting in reduced deformation. As factor B (the value 

of coordinate x of Ø28) increased, combined with the chamfer C2×45, the 

thickness of the shredding end also increased. 

An ANOVA was also carried out as described in Table 4 to further 

study the contributions of the considered geometrical parameters. Just like the 

Symbols Factors 
Levels 

Units 
Level 1 Level 2 Level 3 

A The diameter Ø28 27.8 28.0 28.2 mm 

B The value of coordinate x of Ø28 15.8 16.0 16.2 mm 

C The value of coordinate y of Ø28 43.8 44.0 44.2 mm 

D The diameter Ø100 99.8 100.0 100.2 mm 

E The value of coordinate x of Ø100 13.8 14.0 14.2 mm 

F The value of coordinate y of Ø100 9.8 10.0 10.2 mm 
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S/N ratio analysis, factor B (the value of coordinate x of Ø28) and factor F (the 

value of coordinate y of Ø100) were considered important factors involved in 

reducing deformation. There was a slight difference in the contribution of 

factors although there was a clear qualitatively similar trend in the ANOVA 

and S/N ratio analysis. In addition, according to ANOVA, only four factors, A 

(diameter Ø28), B (the value of coordinate x of Ø28), E (the value of coordinate 

x of Ø100), and F (the value of coordinate y of Ø100) had F values that were 

greater than the corresponding F(0.05,2,5), thus indicating that only these 

geometrical parameters were statistically significant. 

 

Table 3: OA used in the present study: Detailed values and largest 

deformations obtained from the numerical simulations 

 

No. 
Factors 

Deformations MSDs 
S/N 

ratios A B C D E F 

1 27.8 15.8 43.8 99.8 13.8 9.8 0.18830 0.035458 14.50286 

2 27.8 16.0 44.0 100.0 14.0 10.0 0.17801 0.031689 14.99093 

3 27.8 16.2 44.2 100.2 14.2 10.2 0.16526 0.027312 15.63641 

4 28.0 15.8 43.8 100.0 14.0 10.2 0.17734 0.031449 15.02393 

5 28.0 16.0 44.0 100.2 14.2 9.8 0.18509 0.03426 14.65219 

6 28.0 16.2 44.2 99.8 13.8 10.0 0.17414 0.030326 15.18182 

7 28.2 15.8 44.0 99.8 14.2 10.0 0.19171 0.036752 14.34714 

8 28.2 16.0 44.2 100.0 13.8 10.2 0.17207 0.029608 15.2859 

9 28.2 16.2 43.8 100.2 14.0 9.8 0.17917 0.032102 14.93467 

10 27.8 15.8 44.2 100.2 14.0 10.0 0.18201 0.033129 14.79794 

11 27.8 16.0 43.8 99.8 14.2 10.2 0.17490 0.030592 15.14398 

12 27.8 16.2 44.0 100.0 13.8 9.8 0.17024 0.028982 15.37867 

13 28.0 15.8 44.0 100.2 13.8 10.2 0.17542 0.030771 15.1186 

14 28.0 16.0 44.2 99.8 14.0 9.8 0.19575 0.038318 14.16597 

15 28.0 16.2 43.8 100.0 14.2 10.0 0.17729 0.031432 15.02627 

16 28.2 15.8 44.2 100.0 14.2 9.8 0.20187 0.040751 13.89862 

17 28.2 16.0 43.8 100.2 13.8 10.0 0.17725 0.031417 15.02832 

18 28.2 16.2 44.0 99.8 14.0 10.2 0.17597 0.030964 15.09141 

Sum 3.24181 0.585313  
Average 0.18010  14.90031 

 

Table 4: Results from ANOVA 

 
Parameters S f V F F(0.05,2,5) P% Rank 

A 1.33570E-04 2 6.67850E-05 6.15036 5.78614 9.14 4 

B 4.64932E-04 2 2.32466E-04 21.40824 5.78614 31.81 2 

C 2.80007E-05 2 1.40004E-05 1.28932 5.78614 1.92  

D 1.15018E-04 2 5.75088E-05 5.29610 5.78614 7.87  

E 1.39479E-04 2 6.97397E-05 6.42247 5.78614 9.54 3 

F 5.26260E-04 2 2.63130E-04 24.23217 5.78614 36.01 1 

Error 5.42936E-04 5 1.08587E-05     

Total 1.46155E-03 17      
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Figure 3: Results of S/N ratio showing the influences of factors on the 

displacement 

 

 
 

Figure 4: Contributions of factors from the S/N ratio results 

 

Developing RSM 
The Taguchi method is an effective tool that can indicate the importance of 

each factor as well as lead to an improved combination of dimensions involved 

to minimize deformation [30]. However, the improved outcomes achieved 

from the Taguchi method are restricted to one of the three initially designed 

levels for each parameter [31]. This is also evident in the results in Figure 3. 

Therefore, both the orthogonal array and S/N ratio from the Taguchi method 

were used to design the experiments and perform the preliminary analyses. 

RSM was used to reduce the deformation of the shedding ends when subjected 

to shredding force. Using the least-squares method, a second-order response 

model was constructed. Through the analysis of the linear regression equation, 

it could be seen that the coefficient R2 was high (R2 = 0.943), so the improved 

ability of the quadratic regression equation was not significant (R2 = 0.963). 

Also, since there was no statistically significant correlation between the 
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factors, quadratic terms for the correlation and/or interaction of the two factors 

were not added to the quadratic regression equation. 

 

𝐷(𝜇𝑚) = 252.314 − 1.567𝐴 + 4.623 × 10−1𝐵 −
2.282𝐶 − 4.721𝐷 + 1.354𝐸 − 6.269 × 10−2𝐹 − 2.769 ×
10−2𝐴2 − 1.542 × 10−2𝐵2 + 2.601 × 10−2𝐶2 + 2.353 ×
10−2𝐷2 − 4.779 × 10−2𝐸2 + 1.479 × 10−3𝐹2  

(2) 

 

From this built model, the response surfaces could be constructed to 

imagine the influence of the factors on the resulting deformation D. Figures 5 

and 6 illustrate typical graphs of the response surfaces of this study. Figure 5 

shows the effect of two factors A and B simultaneously in producing the result 

of deformation D (µm) with the surface plot in Figure 5a and the contour plot 

in Figure 5b. While Figure 6 presents the response surface created by two 

factors D and F with the surface plot in Figure 6a and the contour plot in Figure 

6b. The lower the position of the response surface is, the smaller the resulting 

deformation becomes, and vice versa. The results in Figures 5 and 6 show high 

agreement with the initial analysis in Figure 3. 

 

   
  (a)         (b) 

 

Figure 5: Response surface of the deformation D (µm) of two factors A (the 

diameter Ø28) and B (the value of coordinate x of Ø28) in (a) surface plot, 

and (b) contour plot 
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  (a)       (b) 

 

Figure 6: Response surface of the deformation D (µm) of two factors D (the 

diameter Ø100) and F (the value of coordinate y of Ø100) in (a) surface plot, 

and (b) contour plot 

 

 

Modelling of the Effect of the Geometrical Factor using ANN 
 

The artificial neural network (ANN) model, which deals with computation and 

prediction, simulates the processes of the human brain [32]. An ANN model 

has a specific architectural format, inspired by a biological nervous system. 

Any ANN model can be considered as a set of interconnected units broadly 

classified into 3 layers [33]. These three layers are the input layer, hidden layer, 

and output layer. The input factors are placed into the input layer and each 

node creates an output value through an activation function. The resulting 

outputs of the input layer are then utilized as inputs to the next hidden layer. 

The output of a neuron is a real value obtained by first performing a linear 

combination of the inputs. These inputs are the outputs of the previous layer, 

with their respective weights and bias, as described in the equation below [34]: 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =∑𝑖𝑛𝑝𝑢𝑡𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑖
𝑖

+ 𝑏𝑖𝑎𝑠 (3) 

 

In this work, the model ANN consists of six neurons in one input layer 

and one neuron (the deformation results) in an output layer. The network is 

linear transfer function, ten hidden layers as shown in Figure 7. The data 

division was selected random (dividerand). Next, Bayesian Regularization 

algorithm was chosen for training. This algorithm usually needs more time, 

however, can give good generalizations for small datasets. According to 

adaptive weight minimization (regularization), training will end. 
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Figure 7: The ANN model for training and testing 

 

The data in Table 3 as well as the two results from the Taguchi and 

RSM were used for training. The results of the ANN model are presented in 

Figures 8 and 9. Figure 8a demonstrates the training performance of the ANN 

model. Whereby, the best training performance was obtained at epoch 148 with 

2.2366e-10. The performance plot in Figure 8a shows mean squared error 

dynamics for all datasets on a logarithmic scale. In general, the training MSE 

always tends to decrease, so the plot shows good training. The train line (blue 

line) met the best (dotted) line, which means convergence has been done. 

Figure 8b, the training state, illustrates some other training statistics. The 

gradient denotes a value of the backpropagation gradient on each iteration in a 

logarithmic scale. The value 9.9135e-8 means that the ANN model attained the 

bottom of the local minimum of the target function. The Mu value obtained 5e-

4 at epoch 148. During the training process, to slow the velocity of the 

descending so that the search value does not fly back and forth across the 

minimum without stopping sufficiently near it, a momentum term (Mu) is 

added. The graph "gamk" in Figure 8b presents the average number of 

parameters per 148 eras that influence the precision of the outcome obtained. 

The value of the function "gamk" equals 16.9211 at epoch 148, which indicates 

that the effect of external factors, such as errors, occurred frequently [35]. The 

plot "ssX" presents the average sum of quadratic parameters per 148 epochs, 

which introduces errors in the outcome of the operation of the ANN. The 

outcome of the "ssX" function presents 3.8104, which is because of the 

minimum influence of errors on the total training outcome of the ANN. Failed 
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validations are iterations as validation MSE increased its value. A lot of 

failures denote overtraining but, in this case, it is still acceptable because the 

validation check equals 0 at 148 epochs as Figure 8b. It should be noted that 

Matlab software automatically stops training after 6 consecutive unsuccessful 

attempts. 

According to Figures 9a and 9b, the R values for training and test are 1 

and 0.99793, respectively. In the plot, the colored solid lines represent the best-

fit linear regression line between outputs and targets. The R-value can be 

considered an indication of the correlationship between the outputs and targets. 

The final obtained R value is 0.99792 as presented in Figure 9c. Therefore, the 

training data indicates a good fit. The results of the statistical analysis obtained 

as listed in Table 5. The training results obtained an MSE value of 2.23659e-

10 and an R-square value of 0.999998. 

 

Table 5: The outcomes of statistical analysis 

 

 Sample MSE R-square 

Training 14 2.23659e-10 9.99998e-1 

Validation 3 0.00000e-0 0.00000e-0 

Testing 3 3.70383e-6 9.97932e-1 

 

   
    (a)          (b) 

 

Figure 8: The training statistics, (a) performance plot, and (b) training state 

 

 

Validation Using Simulation and Experiments 
 

Validation simulation 
From the S/N ratio results as in Figure 3, the minimum deformation of the 

shredding blade under shredding force could be attained using the combination 
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of A1, B3, C1, D3, E1, and F3. As mentioned earlier, considering the geometry, 

this combination widens the blade tip and thus minimizes distortion. An 

additional simulation was carried out utilizing this combination for validation, 

showing that the maximum blade displacement value was 0.16209 μm. It can 

be observed that this value was smaller than the displacement results of all the 

cases presented in the OA, as shown in Table 3. 

 

    
     (a)       (b) 

 

 
(c) 

 

Figure 9: The neural network training regression plot, (a) training, (b) test, 

and (c) all 

 

As shown in Figure 10, to verify the optimal geometrical parameters 

obtained utilizing RSM, a validation simulation was further accomplished. 

According to Table 6, the resulting maximum deformation of the shredding 

end was determined to be 0.16200 μm, which was smaller than any other 

results obtained in Table 3. Also in Table 6, the predictive value of the ANN 

method is 0.16197 μm, closer to the simulated value (0.16200 μm) than the 

predicted result from the RSM model, 0.15567 μm. Next, the prediction results 
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of the two models are presented and analyzed in Figure 11. Figure 11a shows 

the simulation results of the shredding end deformation under different 

geometric conditions and the corresponding prediction results of the two RSM 

and ANN models. The results from the ANN model closely followed the 

simulation results more than the results from the RSM model. These errors are 

presented in more detail in Figure 11b. These results clearly show that, when 

used, the ANN model provides more accurate predictions than the RSM model. 

The prediction results from ANN are slightly more accurate than those from 

RSM, as shown in Figure 11. The maximum error is 0.0029 if compared with 

0.0063. This accuracy may not be much in this industrial application. In 

industrial practice, one must balance implementation costs, software 

installation costs, as well as implementation time and achieve efficiency. 

Therefore, people usually do not need overly complicated measures. However, 

in the current study, it proves the correctness of the method applied. From 

there, this method can be considered for applications in research/production 

where high accuracy is required. 

 

 
 

Figure 10: Simulation result using the optimized geometrical factors from 

RSM 

 

Table 6: Recommended geometrical parameters 

 
Symbols Geometrical parameters Taguchi RSM ANN 

A The diameter Ø28 (mm) 27.8 27.8 27.8 

B The value of coordinate x of Ø28 (mm) 16.2 16.2 16.2 

C The value of coordinate y of Ø28 (mm) 43.8 43.865 43.865 

D The diameter Ø100 (mm) 100.2 100.2 100.2 

E The value of coordinate x of Ø100 (mm) 13.8 13.8 13.8 

F The value of coordinate y of Ø100 (mm) 10.2 10.2 10.2 

Predicted values N/A 0.15567 0.16197 

Numerical validations 0.16209 0.16200 0.16200 
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Validation experiments 
The initial set of shredding blades employed in the shredder exhibited 

significant deformation after running for five hours, as depicted in Figure 12. 

Consequently, there arose a necessity to enhance the profile of the shredding 

blades. Following the optimization of the shredding blades through simulation, 

they were manufactured and subjected to testing. Both the Taguchi and RSM-

optimized shredding blades were evaluated concurrently to ensure a fair and 

equitable assessment. 

 

   
    (a)          (b) 

 

Figure 11: Simulation and prediction results from RSM and ANN models, (a) 

deformation results, and (b) error of prediction 

 

 
 

Figure 12: Illustration of the shredding blade before being optimized via 

Icamscope® 

 

The two types of optimized blades were then microscopically measured 

after approximately 5 hours of continuous work. Figures 13a and b show the 

respective dimensions of the blade's tip according to the Taguchi and RSM 
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methods before the experiment. The sizes were 63 μm and 62 μm, respectively; 

therefore, they could be considered equivalent. Next, Figures 14b and b show 

their dimensions after about 5 hours of continuous work. The radius of the 

cutting tip of the blade from the Taguchi method was enlarged to 88μm 

whereas the tip from the RSM was increased to 71 μm only. These results 

validated an improvement of the optimization process by experiments. 

It was thus validated, both numerically as well as experimentally, that 

the proposed Taguchi-based RSM method was effective enough to triumph the 

limitations of the Taguchi method as a discrete optimization method. In 

addition, the ANN model could be used to predict the deformation of the 

shredding blade more accurately. 

 

   
  (a)        (b) 

 

Figure 13: Illustration of the shredding blade before working for about 5 

hours via ICamScope®; (a) from theTaguchi method, and (b) from RSM 

 

  
  (a)          (b) 

 

Figure 14: Illustration of the shredding blade after working for about 5 hours 

via ICamScope® (a) from the Taguchi method, and (b) from RSM 
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Conclusions 
 

In the present work, an optimization method using both RSM and ANN based 

on the Taguchi platform was used to study the influence of geometrical factors 

of the shredding end of a waste plastic shredder on its deformation under 

shredding force and to determine the optimal combination for the minimum 

deformation. This method utilized a combination of DOE using orthogonal 

arrays and ANOVA of the Taguchi method with response surface analysis 

RSM and ANN prediction model. In numerical simulations of the shredding 

blade, six geometrical elements constituting the shredding end, which is 

mainly subjected to the shredding force, were considered. Applying the S/N 

ratio analysis as well as ANOVA based on the Taguchi method with L18 (36) 

OA, the two most important factors for minimizing displacement of the 

shredding end were identified. The RSM and a self-developed Matlab script 

were used to determine the optimal parameters and the ANN model was used 

to accurately predict the deformation results. After using ANN, the error was 

improved from 0.0063 to 0.0029. Or, while the S/N ratio was utilized to 

identify the important factors, the RSM and/or ANN method was used to fine-

turn these factors. These results were then experimentally validated by 

measurements using the microscope of IcamScope®. Hence, it can be deduced 

with clarity from this investigation that the application of this approach 

presents a viable option for enhancing the operational efficiency of plastic 

recycling machinery. Moreover, the efficacy of the method proposed herein is 

anticipated to bridge the existing disparity between academic research and 

practical industrial manufacturing endeavours.  
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