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ABSTRACT 

 

Solar Radiation Management (SRM) is a controversial idea for minimizing 

global warming. Simulations have been carried out to generate the future 

projection of the climate condition from the Earth System Models (ESM). 

However, the outputs are available on low-resolution data with some degree 

of bias. Downscaling is a solution to obtain ESM data that resembles the local 

climate. This study also applied several popular bias correction methods to 

correct the bias of Marine-Earth Science and Technology (MIROC)-ESM 

historical data and further assessed the significance test for each grid through 

correlation map and Taylor diagram. Extreme index (e.g. the max 1-day 

precipitation amount (RX1Day) and the hottest day (TXx)) projected with SRM 

and without SRM is derived, based on the downscaled output and the best 

correction bias. We found an inconsistent pattern of difference Rx1Day index 

between with and without SRM scenarios, while the TXx index of the with SRM 
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scenario is consistently below the without SRM scenario. It indicated that SRM 

will effectively reduce the level of future maximum temperature. 
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Introduction 
 

The large-scale El-Nino-Southern Oscillation (ENSO) is one of the causes of 

climate change in Indonesia [1, 2]. El-Nino is strongly associated with rainfall 

in Indonesia, especially on the southern equatorial islands (Java, Bali, and 

Nusa Tenggara) during the dry season (June-August) and transition 

(September-November) [3]. Besides ENSO, the greenhouse effect also 

influences climate change in the 21st century. The earth's temperature will 

increase 1-3.7 ˚C depending on future greenhouse gas emissions [4]. The 

Intergovernmental Panel on Climate Change (IPCC) in 2018 reported that the 

current temperature rise was between 1.5 ˚C - 2.0 ˚C as a result of the 

greenhouse effect [5]. The causes of the greenhouse effect include emissions 

from engines emitting various gases such as HCs, CO2. The increasing number 

of exhaust emissions is directly proportional to the need for increased fuel 

consumption. Reducing pollution will reduce the rate of climate change. 

Future urban, transport and environmental planning that can adapt to climate 

change will be a good idea for sustainable development. In this case, the 

engineering profession such as mechanical engineer plays a significant role in 

addressing climate change [6]. 

Based on the statistics reported by the National Disaster Management 

Agency (BNPB), in 2019 there were 3724 forest fires, 1529 droughts, and 1276 

floods, some of which have increased from previous years. Oktaviani et al. [7] 

found that Indonesia will experience an increase in temperature by 0.8 ˚C in 

2030, which will have an impact on changing rainfall patterns and shorter rainy 

seasons. Moreover, the situation will significantly impact the economic and 

agricultural sectors [8]. Climate change mitigation efforts in the future, 

regional development strategies lead to urban greening, public transportation, 

and environmentally friendly energy [9]. The impact of climate change will 

also impact some urban areas because most of Indonesia's population resides 

in cities [10]. Sipayung et al. [11] predict that climate change will induce 

drought leading to a very dry in August 2022, 2024, 2028, 2030, and 2033 on 

the island of Sumba. Kuswanto et al. [12] found that East Nusa Tenggara had 

experienced about 25 months of drought from 1999 to 2015.  

The theoretical approach to controlling climate change by reflecting a 

small amount of sunlight entering the earth back out of space is the basic idea 

of Solar Radiation Management (SRM) or solar geoengineering. Reflection of 

sunlight into space by aerosol injection in the stratosphere is one of the efforts 
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to cool the earth. The impact of SRM was investigated by Kravitz et al. [13] 

by conducting experiments on 4 The Geoengineering Model Intercomparison 

Project (GeoMIP) scenarios namely G1, G2, G3, and G4. SRM does not give 

impact only on climate and weather, but also on socioeconomic, health, and 

other related aspects. The impact of SRM on agriculture is estimated to be 

quite complex. Most crops benefited from cooling under the SRM scenario, 

but not rice and peanuts in ASIA [14]. During the last 15 years (2055 - 2069) 

the injection period of GeoMIP G4 was able to increase 5.3 ± 5.7% of rice 

production in China. [15]. Parkes et al. [16] found contradictory effects of 

geoengineering climate schemes. In Northeast China and West Africa, where 

in Northeast China there was an increase in crop failure while in West Africa 

there was a reduced risk of crop failure due to the doubling of carbon dioxide 

in the atmosphere. The other researches on the impacts of SRM on the 

agricultural sector have been investigated by [14, 15]. Indonesia has a tropical 

climate and most people work on farming activities that are highly dependent 

on weather and climate conditions. Therefore, it is necessary to study the 

effects of geoengineering in Indonesia. The SRM strategy can also impact 

human health from surface aerosol deposition [19]. Besides having an impact 

on the agricultural and health sectors, SRM also has an impact on the social, 

economic and political fields as previously investigated by [20]–[22]. Ji et al. 

[23], Kravitz et al. [24], and Irvine et al. [25] investigated other effects of 

geoengineering on climate and weather. 

Most of the studies show the significant effect of SRM to reduce global 

temperature, however, these studies were mostly conducted in developed 

countries. It is very important to study the impact of SRM in Indonesia. In 

addition to developing countries, Indonesia's geographical location is on the 

equator, which has a tropical climate and is vulnerable to the effects of climate 

change. A study has been conducted in South Africa found a significant 

decrease in mean temperature extremes in South Africa after aerosol injection 

into the stratosphere [26]. Another study by Karami et al. [27] has been focused 

on the scenario of Stratospheric Aerosol Geoengineering (SAG) in storm 

pathways in MENA region. Da-Allada et al. [28] compared SAG with RCP8.5 

in the regions of the North Sahel, Southern Sahel, and West Africa and found 

that during the monsoon period the rainfall under the RCP8.5 scenario 

increased by 44.76%, 19.74%, and 5.14%, while the climate under the SAG 

scenario the rainfall decreased by 4.06% (0.19 ± 0.22 mm) and 10.87% (0.72 

± 0.27) mm) in the Southern Sahel and West Africa. Based on the three studies 

above, it produces different conclusions in each region.  

Conducting a local impact study on SRM requires a high-resolution 

dataset to obtain information that represents the real condition of the targeted 

area. Unfortunately, the Earth System Models (ESM) dataset generated from 

the climate scenarios is available on low-resolution data covering a large 

spatial scale. Therefore, downscaling and bias correction need to be carried 
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out. Converting large-scale grids of General Circulation Models (GCM) data 

into small-scale grids is a function of the downscaling technique [29]. The 

downscaling method provides a computationally efficient and effective way to 

generate plausible hydro-climatology from large ensembles [30]. In recent 

years, methods that combine statistical downscaling have been developed with 

bias correction, to minimize the bias of downscaling results which are more 

representative of the local climate. Among the popular downscaled and bias 

correction methods are Quantile Delta Mapping (QDM), Bias Correction/ 

Constructed Analogues with Quantile Mapping (BCCAQ) and Inter-Sectoral 

Impact Model Intercomparison Project (ISI-MIP). 

Bias-Correction and Spatial Disaggregation (BCSD) can produce better 

results on the Parallel Climate Model (PCM) data compared to linear 

interpolation and spatial disaggregation methods [31]. Another bias correction 

method introduced by Piani et al. [32] is quantile mapping. The method that is 

capable of synthesizing the share of global warming levels in the agriculture, 

water, biome, health, and infrastructure sectors is the ISI-MIP [33]. The ISI-

MIP method has been developed to maintain signals of changing climate 

trends. Quantile mapping can eliminate bias, but quantile mapping can destroy 

the trend of future model projections [34]. BCCAQ downscaling method can 

produce more accurate results by improving the weaknesses of its predecessor 

method. BCCAQ can reduce the global scale to the local scale for the case of 

rainfall and temperature well [35]. Several previous studies have investigated 

the performance of e the QDM, BCCAQ, and ISI-MIP methods [36]–[43]. 

This paper investigates the performance of the three different methods in 

producing the best-downscaled climate projections and bias corrections for 

historical periods. Furthermore, the best method is applied to derive the two 

extreme indices, resulting from the MIROC-ESM scenario under SRM and 

RCP4.5. 

 

 

Data and Methodology 
 

In this research, ESM output will be downscaled using the ERA-Interim 

European Centre for Medium-Range Weather Forecasts (ECMWF) data as the 

proxy of the observation dataset. The downscaling results in the ESM output 

will then be bias-corrected to obtain results that can explain the local climate. 

This paper examines three bias correction methods i.e.  QDM, BCCAQ, and 

ISI-MIP. ESM output in this study consists of three scenarios, namely 

historical, Representative Concentration Pathway (RCP) 4.5, and G4 GeoMIP 

experiment. RCP4.5 is a long-term global greenhouse gas emission scenario 

that by 2100 maintains radiation emissions of around 4.5 Wm−2 (about 650 

ppm CO2 equivalent) [44]. Continuous injection of 5 Tg SO2 into the 
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stratosphere is a GeoMIP experiment in the G4 scenario introduced by Kravitz 

et al. [13]. Following are the G4 and RCP4.5 scenarios. 

 

 
 

Figure 1: G4 and RCP4.5 scenarios (Kravitz et al [10]). 

 

There are two data sources used in this study. The first data source 

comes from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and 

the second data source comes from the European Centre for Medium-Range 

Weather Forecasts (ECMWF). The details of the data are as follows 

 

Table 1: Summary of datasets used in the analysis 

 

Data Scenario Resolution Scale 

Marine-Earth Science and 

Technology (MIROC) 

Earth System Model 

(MIROC-ESM) 

Historical 2.8° × 2.8° Daily 

G4 2.8° × 2.8° Daily 

RCP4.5 2.8° × 2.8° Daily 

ERA-Interim - 0.25° × 0.25° Daily 
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The QDM method is a bias correction method that can maintain relative 

changes in the future [34]. The QDM method for rainfall is as follows: 
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The bias correction for the temperature variable is used as an additive process 

with the following equation: 
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where ,( )m hF  is the cumulative distribution (CDF) of ESM output in the 

historical period, 0,( )hF  is the CDF of observation in the historical period, and 

,( )m pF is the CDF of the future ESM output 'Projection'. Whereas o,hx   represents 

the rainfall or temperature data from observations in the historical period, ESM 

outputs in historical and future periods are ,m hx
 and ,m px

. The results of future 

bias correction on rainfall or temperature data are denoted by ,
ˆ

m px .  

The combination of the output climate analogues introduced by Hidalgo 

et al. [45] and quantile mapping at fine-scale resolution by Piani et al. [32] 

resulted in a BCCAQ downscaling hybrid method. Bias correction for Quantile 

Delta Mapping (QDM) is carried out separately for each algorithm 

(Constructed Analogs (CA) algorithm and Climate Imprint (CI) algorithm), 

which is the first stage of the BCCAQ method [34]. Combining CI and CA 

outputs by taking daily QDM results at each local scale grid point and 

rearranging them in certain months according to daily CA rankings using 

empirical copula is the process of the BCCAQ method [35]. 

The correction of bias using the ISI-MIP method consists of two stages, 

namely long-term monthly average correction and daily variability adjustment 

[33]. Thus, 
data

ijkX  represents data for the i-th day, j-month and k-year, on a 

particular grid cell of the simulation time series (ESM data) or observation, 

where T is the daily average temperature data and P is the data for rainfall. A 

nonlinear (exponential) approach was chosen for the rainfall case, so the 

correction formula in the rainfall data is as follows: 

( )
( )

1 exp

ESM ESM
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P P
P a b P P
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The linear portion of the function above is represented by the offset a 

and the slope of b, while c is the decay constant for the exponential part which 

must be adjusted. While correcting the bias in temperature variables apply the 

linear function as follows: 

ESM ESM ESM

ijk j ijk jkT b T T= +  + %%
                                     (4) 

 

Where j  is the long-term mean temperature in the j-th month, 
ESM

jkT%  is the 

average corrected monthly temperature, 
ESM

ijkT  is the residual ESM output and 

b is the slope. 

Evaluation of our correction bias capabilities uses a Taylor diagram. 

Taylor diagram reflects three statistical measures namely root mean square 

error, correlation, and standard deviation. The method that has the best ability 

is the method that has the lowest Root Mean Square Error (RMSE) value and 

standard deviation, the biggest correlation, and approaches the observation 

point [46]. Furthermore, the best method is used to calculate the two extreme 

indices. The two indices are the hottest day (TXx) and the max 1-day 

precipitation amount (Rx1Day). TXx is the highest daily maximum 

temperature of the month [47]. Rx1Day is the max daily precipitation of the 

month[47]. 

 

 

Results and Discussion 
 

This section will present a MIROC-ESM difference map before and after 

downscaling and bias correction using the three methods (QDM, BCCAQ, and 

ISI-MIP). Correlation maps, significance tests on each grid, and Taylor 

diagrams were being to evaluate the skills of the bias correction method.  The 

best bias correction method applied for climate projection in scenarios with 

(G4 scenario) and without SRM (RCP4.5 scenario). 

 
Downscaling and bias correction of Rainfall and maximum 
temperature data 
Figure 2 presents the raw dataset (before downscaling) and after downscaling 

of MIROC-ESM output for rainfall and maximum temperature. Moreover, the 

maps of observation data i.e. ERA-Interim dataset are given as well. Figure 2 

is the result of the BCCAQ bias correction method. 
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Figure 2: MIROC-ESM; (a) rainfall before downscale and bias correction, (b) 

maximum temperature before downscale and bias correction, (c) rainfall after 

downscale and bias correction, (d) maximum temperature after downscale 

and bias correction, (e) rainfall ERA-Interim ECMWF, and (f) maximum 

temperature ERA-Interim ECMWF. 

  

The raw data has a higher rainfall intensity and maximum temperature 

than the ECMWF ERA-Interim (see Figure 2). After downscaling and bias 

correction on raw data, see Figure 2 (b) and (d), the rainfall and maximum 

temperature shifted the pattern following the ERA-Interim data, this shows that 

downscaling and bias correction can remove the bias well so that it can 

represent the local climate better. The highest rainfall is observed over 

Kalimantan, parts of Sulawesi and Papua. The lowest maximum temperature 

is found along the island of Sumatra and parts of Papua. 

 

Skill Evaluation 
Before choosing the downscale method and the best bias correction for climate 

projections, the correlations between downscaled and observation datasets will 

be displayed. Correlations are calculated to find out whether the results of 

downscale and ESM output have similar patterns with local climate (ERA-

Interim ECMWF). The correlation maps are depicted in Figure 3. 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3: Correlation map of the MIROC-ESM model; (a) rainfall of the 

BCCAQ method, (b) temperature maximum of the BCCAQ method, (c) 

rainfall of the QDM method, (d) maximum temperature of the QDM method, 

(e) rainfall of the ISI-MIP method, and (f) maximum temperature method 

ISI-MIP. 

 

The climate zone in Indonesia is divided into 3 regions based on rainfall 

pattern characteristics. Region 1 is a monsoon type region where the region in 

the region has a clear period between the dry season and rainy season, the type 

of rainfall in region 1 is unimodal. Region 2 is a local type region (anti-

monsoon) which is the opposite of Region 1. Region 3 is an equatorial type 

region where the region has a bimodial rain distribution (two maximum peak 

rainy seasons) almost all of the year included in the rainy season criteria. 

The highest value of the correlation coefficient is observed in the 

southern part of Indonesia, which belongs to Region 1, with coefficients 

ranging from 0.4 to 0.5. Region 3 is the region with the lowest correlation 

coefficient. The ISI-MIP method's correlation map is slightly better than the 

QDM and BCCAQ methods, although the difference is not significant. 

Furthermore, we will test the significance of correlation values along with the 

grids. There are 12834 points (grid) where the correlation significance will be 

tested. A summary of the results of the correlation significance test can be seen 

in Table 2. The suitability of the pattern between the output bias correction of 

the ESM and the reanalysis data (ERA-Interim ECMWF) can be seen from the 

significance of the correlation. Based on Figure 3, it can be seen that the size 

(a) (b) 

(c) (d) 

(e) (f) 
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of the correlation coefficient tends to group according to region, then the 

correlation significance test by region. 

 

Table 2: Test the significance of the grid. 

 

Variable Region Methods 
Value of  

t table 

Significant 

number of 

points (grids) 

Percentage 

(%) 

Rainfall 

Region 1 

BCCAQ 

1.960204 

6137 92.34% 

QDM 6162 92.72% 

ISI-MIP 6515 98.03% 

Region 2 

BCCAQ 

1.960204 

592 90.24% 

QDM 587 89.48% 

ISI-MIP 655 99.85% 

Region 3 

BCCAQ 

1.960204 

3888 70.28% 

QDM 3901 70.52% 

ISI-MIP 5144 92.99% 

Temperature 

Maximum 

Region 1 

BCCAQ 

1.960204 

6613 99.50% 

QDM 6612 99.49% 

ISI-MIP 6542 98.44% 

Region 2 

BCCAQ 

1.960204 

650 99.09% 

QDM 654 99.70% 

ISI-MIP 656 100.00% 

Region 3 

BCCAQ 

1.960204 

5530 99.96% 

QDM 5528 99.93% 

ISI-MIP 5526 99.89% 

 

Rainfall has a significant level of 70 - 92%, where the highest 

percentage is in Region 1. The ISI-MIP method is reliable in all regions 

compared to other methods. The percentage significance of the maximum 

temperature variable reaches 98 - 100%. The skills of the three methods have 

almost the same performance, the ISI-MIP method shows its reliability in 

Region 2 which reaches a perfect percentage. To clarify the method that has 

the best ability to present the local climate, we try to represent the three 

methods in a Taylor diagram. In this study, Taylor diagram for each region 

will be calculated in historical scenarios, both seasonal and non-seasonal. The 

season in this study is divided into 4 periods, namely the transition period 

March April May (MAM) September October November (SON), the rainy 

period is December January February (DJF), and the dry period is June July 

August (JJA), the division of the season period in Indonesia being 4 periods 

with refers to Aldrian and Narulita [1, 44]. 
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Figure 4: Taylor Diagram. 
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Based on Figure 4 it can be seen that both rainfall and maximum 

temperature resulted from the ISI-MIP method consistently have better skills 

compared to the BCCAQ and QDM methods. The ISI-MIP method has a 

correlation of around 0.6, greater than the BCCAQ and QDM methods. The 

SON season is the best season compared to other seasons. The highest 

correlation in the SON season was found in a previous study by Narulita [48], 

where SON is a transition from the dry season to the rainy season. In the 

temperature templates, the maximum correlation of the ISI-MIP method in 

Region 1 reaches 0.79 and in seasonal SON it reaches 0.71. ESM output in 

Region 1 can follow the ERA-Interim ECMWF pattern for seasonal and non-

seasonal (all periods) compared to Region 2 and Region 3. It can be seen based 

on the correlation value in each region, where Region 1 has the highest 

correlation in rainfall variable or maximum temperature. 

 

Projection of Rx1Day and TXx 
Expert Team on Climate Change Detection and Indices (ETCCDI) has 27 

climate change indices included TXx and Rx1Day. Figure 5 indicates that the 

rainfall generated by MIROC-ESM of G4 and RCP4.5 scenarios in 2020 - 

2100 is highly volatile with a level of about 0.4 - 0.98 mm2. The G4 scenario 

can cool the earth, as evidenced by the clear difference between the G4 and 

RCP4.5 scenarios at the maximum temperature variable. In 2070 the G4 

scenario temperature begins to rise and rebound to the level of RCP4.5. To 

find out how effective the G4 is in reducing the surface temperature of the 

earth, we calculate the temperature difference between G4 and RCP4.5 during 

the injection period (2020 - 2069) and post-termination periods (2070 - 2100), 

as presented in Figure 6. 

 

 

(a) 
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Figure 5: Extreme Index; (a) Rx1Day, and (b) TXx. 

 

 

 
 

Figure 6: Difference in TXx Index of G4 and RCP4.5 scenarios; (a) period 

2020 – 2069, and (b) period 2070 - 2100. 

 

 

Conclusion 
 

The downscaling and bias correction methods have been proven to be able to 

resemble the local climate well. The correlation values obtained are 

significant, where the values for maximum temperature are higher than 

(b) 

(b) 

(a) 



F. Fauzi et al. 

 

46 

 

 

rainfall. The percentage of the significant grids for the rainfall variable is more 

than 70% while the maximum temperature is above 95%. The best method 

based on Taylor diagram is ISI-MIP. The ISI-MIP method in the transition 

season SON has a better performance than other seasons. The G4 scenario is 

proven to be able to reduce the maximum temperature greater than without 

SRM. The surface temperature of the earth in all regions of Indonesia under 

SRM will be decreased, but within the post-termination periods, the 

temperature over East Java, parts of Kalimantan, and Sumatra begin to heat 

up. 

 

 

Acknowledgment 
 

Acknowledge the Ministry of Research and Technology (RISTEKBRIN) and 

the Indonesian Ministry of Education and Culture (KEMENDIKBUD) for 

their financial support. Partial supports from PEER project as well as 

DECIMAL project are also acknowlegded. 

 

 

References 
 

[1] E. Aldrian and R. Dwi Susanto, “Identification of three dominant rainfall 

regions within Indonesia and their relationship to sea surface 

temperature,” Int. J. Climatol., vol. 23, no. 12, pp. 1435–1452, 2003. 

[2] I. G. Hendrawan, K. Asai, A. Triwahyuni, and D. V. Lestari, “The 

interannual rainfall variability in Indonesia corresponding to El Niño 

Southern Oscillation and Indian Ocean Dipole,” Acta Oceanol. Sin., vol. 

38, no. 7, pp. 57–66, 2019. 

[3] H. H. Hendon and B. Liebmann, “A Composite Study of Onset of the 

Australian Summer Monsoon,” Journal of the Atmospheric Sciences, vol. 

47, no. 18. pp. 2227–2240, 2002. 

[4] T. R. Anderson, E. Hawkins, and P. D. Jones, “CO2, the greenhouse effect 

and global warming: from the pioneering work of Arrhenius and Callendar 

to today’s Earth System Models,” Endeavour, vol. 40, no. 3, pp. 178–187, 

2016. 

[5] Intergovernmental Panel on Climate, Global Warming of 1.5°C an IPCC 

special report on the impacts of global warming of 1.5 °C above pre-

industrial levels and related global greenhouse gas emission pathways, in 

the context of strengthening the global response to the threat of climate 

change,. Switzerland: IPCC, 2018. 

[6] N. Jha, “Environment, Sustainability and Mechanical Engineering,” 2018. 

[7] R. Oktaviani, S. Amaliah, C. Ringler, M. W. Rosegrant, and T. B. Sulser, 

The impact of global climate change on the Indonesian economy. 



Statistical downscaling and bias correction of the ESM outputs for future climate projection 

 

47 

 

 

Washington, D.C.: IFPRI, 2011. 

[8] H. Kuswanto, M. Salamah, S. M. Retnaningsih, and D. D. Prastyo, “On 

the Impact of Climate Change to Agricultural Productivity in East Java,” 

J. Phys. Conf. Ser., vol. 979, no. 1, pp. 0–8, 2018. 

[9] I. R. Abubakar and U. L. Dano, “Sustainable urban planning strategies for 

mitigating climate change in Saudi Arabia,” Environ. Dev. Sustain., vol. 

22, no. 6, pp. 5129–5152, 2020. 

[10] Y. Suryadi, D. N. Sugianto, and Hadiyanto, “Climate Change in Indonesia 

(Case Study: Medan, Palembang, Semarang),” E3S Web Conf., vol. 31, 

pp. 3–8, 2018. 

[11] S. B. Sipayung et al., “Analysis of Drought Potential in Sumba Island until 

2040 Caused by Climate Change,” J. Phys. Conf. Ser., vol. 1373, no. 1, 

pp. 1-12, 2019. 

[12] H. Kuswanto, K. Fithriasari, and R. Inas, “Drought risk mapping in East 

Nusa Tenggara Indonesia based on return periods,” Asian J. Sci. Res., vol. 

11, no. 4, pp. 489–497, 2018. 

[13] B. Kravitz et al., “The Geoengineering Model Intercomparison Project 

(GeoMIP),” Atmos. Sci. Lett., vol. 12, no. 2, pp. 162–167, 2011. 

[14] C. H. Trisos, C. Gabriel, A. Robock, and L. Xia, “Chapter 24 - Ecological, 

Agricultural, and Health Impacts of Solar Geoengineering,” in Resilience, 

Z. Zommers and K. Alverson, Eds. Elsevier, pp. 291–303, 2018. 

[15] P. Zhan, W. Zhu, T. Zhang, X. Cui, and N. Li, “Impacts of Sulfate 

Geoengineering on Rice Yield in China: Results From a Multimodel 

Ensemble,” Earth’s Futur., vol. 7, no. 4, pp. 395–410, 2019. 

[16] B. Parkes, A. Challinor, and K. Nicklin, “Crop failure rates in a 

geoengineered climate: Impact of climate change and marine cloud 

brightening,” Environ. Res. Lett., vol. 10, no. 8, 2015. 

[17] L. Xia et al., “Solar radiation management impacts on agriculture in 

China: A case study in the GeoengineeringModel Intercomparison Project 

(GeoMIP),” J. Geophys. Res.  Atmos., vol. 119, pp. 8695–8711, 2014. 

[18] M. Zilli et al., “The impact of climate change on Brazil’s agriculture,” Sci. 

Total Environ., vol. 740, pp. 139384, 2020. 

[19] U. Effiong and R. L. Neitzel, “Assessing the direct occupational and 

public health impacts of solar radiation  management with stratospheric 

aerosols.,” Environ. Health, vol. 15, pp. 7, Jan. 2016. 

[20] R. Gunderson, D. Stuart, and B. Petersen, “The Political Economy of 

Geoengineering as Plan B: Technological Rationality, Moral Hazard, and 

New Technology,” New Polit. Econ., vol. 24, no. 5, pp. 696–715, 2019. 

[21] K. K. Ott, “On the political economy of Solar Radiation Management,” 

Front. Environ. Sci., vol. 6, no. June, pp. 1–13, 2018. 

[22] A. Aaheim et al., “An economic evaluation of solar radiation 

management,” Sci. Total Environ., vol. 532, pp. 61–69, 2015. 

[23] D. Ji et al., “Extreme temperature and precipitation response to solar 



F. Fauzi et al. 

 

48 

 

 

dimming and stratospheric aerosol geoengineering,” Atmos. Chem. Phys., 

vol. 18, no. 14, pp. 10133–10156, 2018. 

[24] B. Kravitz et al., “A multi-model assessment of regional climate 

disparities caused by solar geoengineering,” Environ. Res. Lett., vol. 9, 

no. 7, 2014. 

[25] P. J. Irvine et al., “Towards a comprehensive climate impacts assessment 

of solar geoengineering,” Earth’s Futur., vol. 5, no. 1, pp. 93–106, 2017. 

[26] I. Pinto, C. Jack, C. Lennard, S. Tilmes, and R. C. Odoulami, “Africa’s 

Climate Response to Solar Radiation Management With Stratospheric 

Aerosol,” Geophys. Res. Lett., vol. 47, no. 2, pp. 1–10, 2020. 

[27] K. Karami, S. Tilmes, H. Muri, and S. V. Mousavi, “Storm Track Changes 

in the Middle East and North Africa Under Stratospheric Aerosol 

Geoengineering,” Geophys. Res. Lett., vol. 47, no. 14, 2020. in West 

African Summer Monsoon Precipitation Under Stratospheric Aerosol 

Geoengineering,” Earth’s Futur., vol. 8, no. 7, 2020. 

[29] A. H. Wigena, “Pemodelan Statistical Downscaling Dengan Regresi 

Projection Pursuit Untuk Peramalan Curah Hujan Bulanan (Kasus Curah 

hujan bulanan di Indramayu),” Disertation, 2006. 

[30] E. P. Salathe Jr, P. W. Mote, and M. W. Wiley, “Review of scenario 

selection and downscaling methods for the assessment of climate change 

impacts on hydrology in the United States pacific northwest,” Int. J. 

Climatol., vol. 27, no. 12, pp. 1611–1621, 2007. 

[31] A. W. Wood, L. R. Leung, V. Sridhar, and D. P. Lettenmaier, “Hydrologic 

implications of dynamical and statistical approaches to downscaling 

climate model outputs,” Clim. Change, vol. 62, no. 1–3, pp. 189–216, 

2004. 

[32] S. Hagemann, C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani, 

“Impact of a Statistical Bias Correction on the Projected Hydrological 

Changes Obtained from Three GCMs and Two Hydrology Models,” J. 

Hydrometeorol., vol. 12, pp. 556–578, 2011. 

[33] S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, “A 

trend-preserving bias correction – the ISI-MIP approach,” pp. 219–236, 

2013. 

[34] A. J. Cannon, S. R. Sobie, and T. Q. Murdock, “Bias correction of GCM 

precipitation by quantile mapping: How well do methods preserve 

changes in quantiles and extremes?,” J. Clim., vol. 28, no. 17, pp. 6938–

6959, 2015. 

[35] A. T. Werner and A. J. Cannon, “Hydrologic extremes -- an 

intercomparison of multiple gridded statistical downscaling methods,” 

Hydrol. Earth Syst. Sci., vol. 20, no. 4, pp. 1483–1508, 2016. 

[36] M. A. Sunyer, H. Madsen, and P. H. Ang, “A comparison of different 

regional climate models and statistical downscaling methods for extreme 

rainfall estimation under climate change,” Atmos. Res., vol. 103, pp. 119–



Statistical downscaling and bias correction of the ESM outputs for future climate projection 

 

49 

 

 

128, 2012. 

[37] M. A. Sarr, O. Seidou, Y. Tramblay, and S. El Adlouni, “Comparison of 

downscaling methods for mean and extreme precipitation in Senegal,” J. 

Hydrol. Reg. Stud., vol. 4, pp. 369–385, 2015. 

[38] M. B. Switanek et al., “Scaled distribution mapping: a bias correction 

method that preserves raw climate model projected changes,” Hydrol. 

Earth Syst. Sci., vol. 21, no. 6, pp. 2649–2666, 2017. 

[39] J. R. Lanzante, D. Adams-Smith, K. W. Dixon, M. Nath, and C. E. 

Whitlock, “Evaluation of some distributional downscaling methods as 

applied to daily maximum temperature with emphasis on extremes,” Int. 

J. Climatol., vol. 40, no. 3, pp. 1571–1585, 2020. 

[40] J. H. Heo, H. Ahn, J. Y. Shin, T. R. Kjeldsen, and C. Jeong, “Probability 

distributions for a quantile mapping technique for a bias correction of 

precipitation data: A case study to precipitation data under climate 

change,” Water (Switzerland), vol. 11, no. 7, 2019. 

[41] F. Fauzi, H. Kuswanto, and R. M. Atok, “Bias correction and statistical 

downscaling of earth system models using quantile delta mapping (QDM) 

and bias correction constructed analogues with quantile mapping 

reordering (BCCAQ),” J. Phys. Conf. Ser., vol. 1538, no. 1, 2020. 

[42] Y. Kim, C. H. R. Lima, and H. Kwon, “Kriging Approach to Quantile 

Delta Mapping ( QDM ) for Spatial Downscaling of Climate Change 

Scenario,” pp. 20829, 2021. 

[43] Y. Tong, X. Gao, Z. Han, Y. Xu, Y. Xu, and F. Giorgi, “Bias correction 

of temperature and precipitation over China for RCM simulations using 

the QM and QDM methods,” Clim. Dyn., no. 0123456789, 2020. 

[44] R. H. Moss et al., “The next generation of scenarios for climate change 

research and assessment,” Nature, vol. 463, no. 7282, pp. 747–756, 2010. 

[45] H. G. Hidalgo, D. M. D., and D. R. Cayan, “Downscaling with constructed 

analogues: Daily precipitation and temperature fields over the United 

States,” 2008. [Online]. Available: http://tenaya.ucsd.edu/wawona-

m/downscaled/supporting_materials/CEC-500-2007-123.pdf. 

[46] K. E. Taylor, “Summarizing multiple aspects of model performance in a 

single diagram,” J. Geophys. Res., vol. 106, no. D7, pp. 7183–7192, 2001. 

[47] M. G. Donat et al., “Updated analyses of temperature and precipitation 

extreme indices since the beginning of the twentieth century: The HadEX2 

dataset,” J. Geophys. Res. Atmos., vol. 118, no. 5, pp. 2098–2118, 2013. 

[48] I. Narulita, “Pengaruh ENSO dan IOD pada Variabilitas Curah Hujan 

diDAS Cerucuk, pulau Belitung,” J. Tanah dan Iklim, vol. 41, no. 1, pp. 

45, 2020. 

 

 


